If it's not what You are looking for type in the equation solver your own equation and let us solve it.
148x^2+603.86x-1785=0
a = 148; b = 603.86; c = -1785;
Δ = b2-4ac
Δ = 603.862-4·148·(-1785)
Δ = 1421366.8996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(603.86)-\sqrt{1421366.8996}}{2*148}=\frac{-603.86-\sqrt{1421366.8996}}{296} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(603.86)+\sqrt{1421366.8996}}{2*148}=\frac{-603.86+\sqrt{1421366.8996}}{296} $
| (x-2)(x+1)=(x-3)(x+4) | | (x+5)(x+7)=(x+1)(x+19) | | 13(3x+2)-12(x+4)=38x | | 5(4x+13)-6(5x-12)=57 | | 148x^2-393,64x-1785=0 | | 5b-7=98 | | 3(2x-5)-4(2x-9)=2x-10 | | X^3+4x=352 | | (X/4)+(8x)=45 | | 10k-8-18k-18=-8k-5 | | |2x+5|−4=10 | | 2p+7p–20=125 | | -3(a-12)=12 | | -4+17x=-129+8x | | (7,2x+3,5)+(2,4x-9)-(8,6x-9,5)=11 | | 6-4p÷9-10=-6 | | 15+1,2x+21=3x-4+0,2x | | 2x+6=(4x-6) | | 8,4-(5,2-x)=7,2 | | 0,6x=7+2 | | 8+p=-8p-5 | | -18-6b=18-18b | | 4(x-5)-3(x-7)=2x-10 | | -6n=6n | | 243-x=-532 | | 5n=4n-5 | | -5-7x=-3(4x-8)-2x | | x-18,2=-9,6 | | -4,5-x=12,6 | | 4,08+x=-7,5 | | -75=-3(3a=10) | | -6x+10=7 |